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5 Angle Modulation: FM and PM
5.1. We mentioned in [4.1] that a sinusoidal carrier signal
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has three basic parameters: amplitude, frequency, and phase. Varying these
parameters in proportion to the baseband signal results in amplitude mod-
ulation (AM), frequency modulation (FM), and phase modulation (PM),
respectively.

5.2. As usual, we will again assume that the baseband signal m(t) is|bamndss

limmiseantRBa that is, [M(f)] = 0 for | f| > B. M|

As in the AM section, we will also assume that

Om(®)] < m. "

In other words, m(t) is bounded between —m,, and m,.
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Definition 5.3. Phase modulation (PM):
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Definition 5.4. The main characteristicﬂ of frequency modulation (FM)
is that the carrier frequency f(t) would be varied with time so that
S k) § ™Mp
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e The arbitrary constant k is sometimes denoted by ky to distinguish it 20.

from a similar constant in PM.

where k is an arbitrary cons

Example 5.5. With a sinusoidal message signal in Figure 24k, the frequency
deviation of the FM modulator output in Figure 24d is proportional to
m(t). Thus, the (instantaneous) frequency of the FM modulator output is

maximum when m(t) is maximum and minimum when m(¢) is minimum.
rmax of m(t)

e Figure 24: Different modulations of sinu-
/ soidal message signal. (a) Message signal. (b)
Unmodulated carrier. (c¢) Output of phase
modulator (d) Output of fréquency modular
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The phase dev1at10n of the PM output is proportional to m(t). However,
because the phase is varied continuously, it is not straightforward (yet) to

2ITreat this as a practical definition. The more rigorous definition will be provided in
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see how Figure 24 is related to m(t). In Example [5.18, we will come back
to this example and re-analyze the PM output.

Example 5.6. Figure 25]illustrates the outputs of PM and FM modulators
when the message is a unit-step function.

m(1) i Figure 25: Comparison of PM and FM mod-
m(t) 1|=— ish _velve  lator outputs for a unit-step input. (a) Mes-

sage signal. (b) Unmodulated carrier. (c)
X +  Phase modulator output (d) Frequency mod-
Low velve T ulator output. [I4, Fig 4.1 p 158]
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e For the PM modulator output,

o the (instantaneous) frequency is f. for both t < ¢y and t > ¢

™

o the phase of the unmodulated carrier is advanced by k, = 3 radians
for t > 1y giving rise to a signal that is discontinuous at ¢ = .

e For the FM modulator output,
o the frequency is f, for t < ty, and the frequency is f.+ fq for t >t

o the phase is, however, continuous at t = t.
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Figure 26: [lustrative AM, FM, and PM waveforms. 3] Fig 5.1-2 p 212]

Example 5.7. Figure [26] illustrates the outputs of AM, FM, and PM mod-
ulators when the message is a triangular (ramp) pulse.

To understand more about FM, we will first need to know what it actually
means to vary the frequency of a sinusoid.

5.1 Instantaneous Frequency

Definition 5.8. The generalized sinusoidal signal is a signal of the form

x(t) = Acos (6(t)) (50)
where 6(t) is called the generalized angle.

e The generalized angle for conventional sinusoid is 27 f.t + ¢.

e In [3, p 208], O(t) of the form 27 f.t + ¢(t) is called the total instan-
taneous angle.

Definition 5.9. If[8(#)/in (50) contains the message information m(t), we
have a process that may be termed angle modulation.

e The amplitude of an angle—modulatied wave is constant.
(CD”"{ e x.)

e Another name for this process is exponential modulation.
A
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x_(f):Acos(ﬁ(t)) = A Rc{C_J } cos a Rc{ﬁ }

o The motivation for this name is clear when we write z(t) as ARe {e//")}.

o It also emphasizes the nonlinear relationship between xz(¢) and
m(t).

e Since exponential modulation is a nonlinear process, the modulated
wave x(t) does not resemble the message waveform m(t).

5.10. Suppose we want the frequency f. of a carrier Acos(27f.t) to vary
with time as in ([49). It is tempting to consider the signal

Acos(2mg(t)t), (51)
where ¢(t) is the desired frequency at time t.

Example 5.11. Consider the generalized sinusoid signal of the form
above with g(t) = t2. We want to find its frequency at ¢t = 2.

(a) Suppose we guess that its frequency at time ¢ should be g(¢). Then,
at time t = 2, its frequency should be > = 4. However, when com-
pared with cos (27(4)t) in Figure 27h, around ¢ = 2, the “frequency”
of cos(2m (t2) t) is quite different from the 4-Hz cosine approximation.
Therefore, 4 Hz is too low to be the frequency of cos(2m (tQ) t) around
t=2.

x, (t) = cos(2n’t2t)

x1(t)

cos(2-m-12-t)
o -0

' 4 Hzis too low!!!

12 Hz fits better.

x1(t)

cos(2-m-12-t)
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Figure 27: Approximating the frequency of cos(2m (t?)t) by (a) cos(2m(4)t) and (b)
cos (2m(12)t).
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(b) Alternatively, around t = 2, Figure shows that cos (27(12)t) seems
to provide a good approximation. So, 12 Hz would be a better answer.
Definition 5.12. For generalized sinusoid Acos, the tnstantaneous
frequencylﬂ at time t is given by
1 d Py,
t)=——0(t). 52
£(t) = 55000 (52)

Example 5.13. For the signal cos(27 (tZ) t) in Example [5.11}

0(t)=2m (1*)¢
and the instantaneous frequency is

f@t)= %%9 (t) = Ld (2m () t) = 3t*.

2 dt
In particular, f(2) =3 x 22 = 12.

5.14. The instantaneous frequency formula implies
t t
0(t) = 2 / F()dr = 0to) + 2x | f(r)dr (53)
—o0 to

5.2 FM and PM

Definition 5.15. Frequency modulation (FM): s (+) = l‘f’ moLE)
/-ﬁl\——-—"\

xpm (t) = Acos | 2nfet + ¢ + 27ky / m (T)dT) : (54)
—
&

The instantaneous frequency is given bygu'—) ) 1 4 gty = _A__ &)
7
@) = fet+km(t).

22 Although f(t) is measured in hertz, it should not be equated with spectral frequency. Spectral frequency
f is the independent variable of the frequency domain, whereas instantaneous frequency f(t) is a time-
dependent property of waveforms with exponential modulation.
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5.16. Phase modulation (PM): The phase-modulated signal is defined
in Definition 5.3 to be

xpy (t) = Acos (21}3 + ¢+ kym (¢))

Its instantaneous frequency 1S ew>

4 __ _ lep v (& (55)
At a3 O £+ Kpm(by

7
Therefore, the instantaneous frequency of the output of the PM modu-
lator is

e maximum when the slope of m(¢) is maximum and
e minimum when the slope of m(t) is minimum.

Example 5.17. Sketch FM and PM waves for the modulating signal m(t)
shown in 28h.
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Figure 28: FM and PM waveforms generated from the same message.

This “indirect” method of sketching zpys(t) (using m(t) to frequency-
modulate a carrier) works as long as m(t) is a continuous signal. If m(t)
is discontinuous, this indirect method fails at points of discontinuities. In
such a case, a direct approach should be used to specify the sudden phase
changes.
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Example 5.18. Consider xpy;(t) in Example (5.5, It is copied here in Figure
along with the corresponding message m(t) which generates it.

Figure 29: zpp(t) and the corre-
sponding m(t).

5.19. Relationship between FM and PM:

e Equation implies that one can produce frequency-modulated signal
from a phase modulator.

e Equation implies that one can produce phase-modulated signal
from a frequency modulator.

e The two observations above are summarized in Figure [30]

dt | Modulator

Frequency modulator Figure 30: With the help
e ) ™\ of int‘eg.rating and dif-
I m(r)dr ferentiating networks, a
m(t) L, J‘ b - Phase Xem (t) phase modulator can pro-
| Modulator duce frequency modula-
tion and vice versa [4, Fig
N ) 5.2 p 255,
4 N
m(t) Ly i ml(t) .| Frequency Xowm (t
J

Phase modulator

e By looking at an angle-modulated signal x(¢), there is no way of telling
whether it is FM or PM.

o Compare Figure and in Example [5.5]

o In fact, it is meaning less to ask an angle-modulated wave whether
it is FM or PM. It is analogous to asking a married man with
children whether he is a father or a son. [B, p 255]
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5.20. Generalized angle modulation (or ea:jénential modulation):
—l
x(t) = Acos (2 fot + 6y + (m * h)(%))

where h is causal. CO’\VOIU"Hoh

—

(a) Frequency modulation (FM): h(t) = 2nk¢1l[t > 0] ——F——+
(b) Phase modulation (PM): h(t) = k,6(t). mih = mx k,S = kpm

5.21. So far, we have spoken rather loosely of amplitude and phase modula-
tion. If we modulate two real signals a(t) and ¢(t) onto a cosine to produce
the real signal x(t) = a(t) cos(w.t 4+ ¢(t)), then this language seems unam-
biguous: we would say the respective signals amplitude- and phase-modulate
the cosine. But is it really unambiguous?

The following example suggests that the question deserves thought.

Example 5.22. [8, p 15] Let’s look at a “purely amplitude-modulated”
signal
x1(t) = a(t) cos(wet).

Assuming that a(t) is bounded such that 0 < a(t) < A, there is a well-

defined function |

O(t) = cos ™! <Z:U1(t)) — wt.
Observe that the signal
xo(t) = Acos (wet + 6(t))

is exactly the same as x1(t) but xo(t) looks like a “purely phase-modulated”
signal.

5.23. Example[5.22)shows that, for a given real signal z(t), the factorization
x(t) = a(t) cos(w.t + ¢(t)) is not unique. In fact, there is an infinite number
of ways for x(t) to be factored into “amplitude” and “phase”.
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